Debiasing Word Embedding Improves Multimodal Machine Translation

Tosho Hirasawa, Mamoru Komachi Tokyo Metropolitan University, hirasawa-tosho@ed.tmu.ac.jp

1 Task & Background

Multimodal Neural Machine Translation (MMT)

- MT using non-linguistic information
- WMT Multimodal Shared Task

 - Inputs: source sentence + image Output: target sentence

Problem

- Only small amount of training data is available (\approx 30k).

 Poor performance for translating less-frequent words.

- GloVe word embeddings are useful for various multimodal NMT models irrespective of the extent to which visual features are used in them.
- All-but-the-Top debiasing technique for pretrained word embeddings to further improve multimodal NMT models.

2 Related works

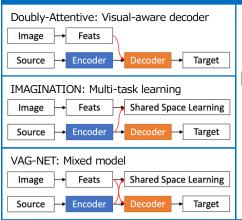
Pretrained Word Embeddings for NMT [Qi et al., 2018]

- Use pretrained word embedding to initialize NMT model.
- Better performance in low-resource scenario; while decreasing as the data size is growing up.
 Distance language pairs receive more profit.
- Use vanilla pretrained word embedding. Debiasing is not processed.

All-but-the-Top [Mu and Viswanath, 2018]

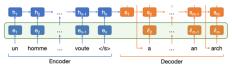
- Reduce the hubness of pretrained word embedding.
 - Hubness: word embeddings are used in the k-nearest neighbor (k-NN) problem, certain words appear frequently in the k-nearest neighbors for other words.
- Better performance for word similarity tasks and clustering tasks.
- Neural models are tested in a few scenario.

3 MMT model / Word embedding / Debiasing



Model initialization

Initialize embedding layers in both encoder and decoder.



Pretrained word embeddings

- word2vec, GloVe, and FastText.
- Debiased after pretraining.
- OOV words are calculated as the average embedding over words that are a part of pretrained embeddings but are not included in the vocabularies.

Localized Centering [Hara et al., 2015]

- Debias using the local bias of each word
 - 1. Retrieve k-nearest neighbors (k-nn) of each word using cosine similarity.
 - 2. Subtract the mean vector of k-nn from original representation to get the debiased representation.

All-but-the-Top [Mu and Viswanath, 2018]

- Debias using the global bias of corpus
 - 1. Subtract the centroid of all words from each word.
 - 2. Compute the PCA components for the centered space.
 - 3. Subtract the top 3 PCA components from each centered word.

4 Experiment

Dataset: Multi30K (English -> German/French) Model (RNN-based)

- Vocabulary: 10,000 Embedding: 300D Encoder: bi-GRU, 256D
- Decoder: 256D Attention: 256D heam: 1

Pretrained word embedding

Dataset: Wikidump word2vec: CBOW Glove: window size 10 FastText: CBOW, 5-gram

Training

- Optimizer: Adam
- Learning rate: 0.0004
- Batch size: 64 Dropout: 0.3

		Lines	Types	iokens
	English	96M	10M	2347M
	German	35M	11M	829M
	French	39M	4M	703M
	Statistics	of Wikdumi	(lanuary	20 2019)

5 Results

English -> German (METEOR, average of 3 runs)

Model (random)	Debiasing	None	LC	AbtT
NMT	word2vec	52.71	53.10	52.09
(54.68)	GloVe	54.75	55.30	55.21
Doubly-Attention	word2vec	50.71	51.06	50.71
(52.37)	GloVe	53.40	53.53	54.39
IMAGINATION	word2vec	52.32	52.48	52.86
(54.18)	GloVe	55.08	54.88	55.08
VAG-NET	word2vec	53.11	52.53	52.43
(55.07)	GloVe	55.27	54.51	55.66

English -> French (METEOR, average of 3 runs)

Model (random)	Debiasing	None	LC	AbtT
NMT	word2vec	70.44	71.15	70.58
(72.57)	GloVe	73.84	72.86	73.38
Doubly-Attention	word2vec	67.84	71.15	68.29
(71.16)	GloVe	71.84	71.20	72.02
IMAGINATION	word2vec	70.80	70.97	71.03
(72.44)	GloVe	72.71	73.30	73.39
VAG-NET	word2vec	71.17	71.04	71.75
(72.59)	GloVe	73.44	73.31	73.36

6 Discussion / Examples

Word Embedding (word2vec, GloVe, FastText)

- GloVe performs the best for MMT models. word2vec are reported to be cohesively clustered and not evenly distributed, making models to learn from some specific values.
- FastText learns both words and their subwords and requires more training data to get competitive performance.

Debiasing (Localized Centering, All-but-the-Top)

All-but-the-Top improves most of models.

Languages (English -> German, English -> French)

Better performance for distant language pairs (English -> German).

Translation examples

Source	a young boy wearing a blue jersey and yellow shorts is playing soccer .
Reference	ein junge in einem blauen trikot und gelben shorts spielt fußball .
VAG	ein junge in blauem trikot und gelben shorts spielt fußball .
VAG (GloVe)	ein junge in einem blauen trikot und gelben shorts spielt fußball .